Application Notes

SDS2000X Plus Series

Power Supply Design: Load Step Response with a SIGLENT DC Electronic Load

April 3, 2020

Building a power supply that can handle various loads without oscillating can be a challenge. Computational models and computer simulations can help get your design headed in the right direction, but physical testing is essential to proving the performance of your design. One method of quickly determining stability is to use a load step response. … Continued

Analyzing GSM Radio Protocol with a Siglent SDS2000X Plus Oscilloscope

March 10, 2020

Two SIGLENT users, Karel and Simon Sotek, recently took a SIGLENT SDS2354X Plus oscilloscope and investigated a GSM cell phone signal. Here is their report: We took a retired Siemens A36 cellphone to learn the capabilities of this new Siglent scope. Available documentation and medium-density PCB of the selected A36 made the signal probing … Continued

Programming Example: Identification String (*IDN?) return with LabVIEW 2018

December 16, 2019

This LabVIEW VI (version 2018) provides a simple platform to begin creating LabVIEW programs. You can download the VI here: VISA_IDN.ZIP In this example, the user can: Select the connected instruments from the VISA Resource List drop down menu: NOTE: USB devices will automatically appear. For LAN connections, you will need to add the device. … Continued

Programming Example: List connected VISA compatible resources using PyVISA

August 30, 2018

PyVISA is a software library that enables Python applications to communicate with resources (typically instruments) connected to a controlling computer using different buses, including: GPIB, RS-232, LAN, and USB. This example scans and lists the available resources. It requires PyVISA to be installed (see the PyVISA documentation for more information) *** #Example that scans a … Continued

SDS FFT performance on low frequency signals

May 23, 2018

Like many modern oscilloscopes, the SIGLENT SDS series feature FFT math functions that calculate frequency information from the acquired voltage vs. time data. FFT stands for Fast Fourier Transform, and is a common method for determining the frequency content of a time-varying signal. Converting time domain data to the frequency domain makes measuring characteristics like … Continued